Question Number	Answer		Mark
*1(a)(i)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Measure the mass of each glider	(1)	
	Measure the length of the card	(1)	
	Recognise the time (for the card) to pass the light gate	(1)	
	Calculate the velocity using length (of card)/time Recognise the need to show that $m_1v_1 = (m_1+m_2)v_1$	(1)	
	Or the equivalent description in words	(1)	_
1(a)(ii)			5
	Law of conservation of momentum only applies when no external forces act	(1)	
	Friction would be an external force		
	Or Friction would alter/affect the velocities (immediately before and after the collision)		
	Or there is time between the readings during which friction acts	(1)	
			2
1(b)(i)	Use of $p=mv$ to determine momentum before and after collision $v = 0.50 \text{ m s}^{-1}$	(1) (1)	
	$\frac{\text{Example of calculation}}{v = \frac{(0.50 \text{ kg} \times 0.90 \text{ m s}^{-1}) - (0.50 \text{ kg} \times 0.20 \text{ m s}^{-1})}{0.70 \text{ kg}} = 0.50 \text{ m s}^{-1}$		
			2
1(b)(ii)	$E_{\rm k}$ before collision = 0.20 J	(1)	
	E_k after collision = 0.10 J hence inelastic collision (ecf from (b)(i)	(1)	
	(correct calculation of energy difference = 0.1 J and conclusion scores both marks)		
	Example of calculation		
	Before $E_k = \frac{1}{2} \times 0.50 \text{ kg} \times (0.90 \text{ m s}^{-1})^2 = 0.20 \text{ (J)}$		
	After		
	$E_{k} = \left(\frac{1}{2} \times 0.50 \text{ kg} \times (0.20 \text{ m s}^{-1})^{2}\right) + \left(\frac{1}{2} \times 0.70 \text{ kg} \times (0.50 \text{ m s}^{-1})^{2}\right) = 0.098 \text{ (J)}$		
			2
	Total for question		11

Question	Answer		Mark
Number			
*2	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	statement that indicates that the conservation of momentum does apply	(1)	
	the idea that the probe and tank move in opposite directions [accept move apart] Or the idea that the probe and tank experience equal and opposite forces	(1)	
	Probe and tank experience equal changes in momentum (in opposite directions)	(1)	
	Statement that indicates that (total) energy is conserved	(1)	
	Kinetic energy of the system increases (so speed increases)	(1)	
	(Some) chemical energy converted to KE	(1)	6
	Total for question		6

Question Number	Answer		Mark
3	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Either Initial momentum is zero Nucleus and alpha particle have equal momentum (accept $m_n u_n = m_a u_a$ or $p_n = p_a$) alpha particle and nucleus move in opposite directions Mass of alpha particle < mass of nucleus (therefore $v_n < v_a$) Or The nucleus and alpha particle exert an equal but opposite force on each other. Mass of alpha particle < mass of nucleus Acceleration of nucleus < acceleration of alpha particle Force/acceleration acts for same time so Δv for nucleus is smaller for nucleus	(1) (1) (1) (1) (1) (1) (1)	
	Total for question		4

Question Number	Answer		Mark
4(a)	Use of eV conversion Use of $E_k = p^2/2m$ Or $E_k = 1/2mv^2$ and $p = mv \ p = 1.4 \times 10^{-23}$ (N s) Example of calculation $p^2 = 2 \times 9.11 \times 10^{-31}$ kg $\times 1.6 \times 10^{-19}$ C $\times 700$ V $p^2 = 2.04 \times 10^{-46}$ N ² s ² $p = 1.4 \times 10^{-23}$ N s	(1) (1) (1)	3
4(b)	Use of $\lambda = h/p$ ecf from (a) $\lambda = 4.6 \times 10^{-11}$ m (show that value $\rightarrow 6.6 \times 10^{-11}$ m)	(1) (1)	2
4(c)	Wavelengths need to be similar to the size of the atom Or reference to atomic spacing being similar to answer in (b)	(1)	1
	Total for question		6

Question Number	Answer		Mark
5(a)	Sum of momenta before (collision) = sum of momenta after (collision) Or the total momentum before (a collision) = the total momentum after (a collision) Or total momentum remains constant		
	Or the momentum of a system remains constant	(1)	
	Providing no external/unbalanced/resultant force acts Or in a closed system	(1)	2
5(b)(i)	Use of equation(s) of motion sufficient to get answer Initial speed = $1.1 \text{ (m s}^{-1})$	(1) (1)	2
	Example of calculation s = (u+v)t/2 $0.69 \text{ m} = (u+0) \times 1.3 \text{ s}/2$ $u = 1.06 \text{ m s}^{-1}$		
5b)(ii)	Constant acceleration/deceleration (accept constant force)	(1)	
5(b)(iii)	Use of momentum = $mv \operatorname{ecf} v \operatorname{from} (b)(i)$ Calculates momentum after collision using correct mass Speed of pellet = 117 or 124 or 129 (m s ⁻¹)	(1) (1) (1)	3
	Example of calculation Momentum after = $(97.31 + 0.84)$ g × 1.06 m s ⁻¹ = 104 g m s ⁻¹ Momentum before = momentum after Speed of pellet = 104 g m s ⁻¹ / 0.84 g = 124 m s ⁻¹		
*5(c)(i	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Mention of momentum	(1)	
	Pellet (bounces back so) has negative momentum /velocity Or momentum after = momentum of car - momentum of pellet	(1)	
	Pellet undergoes a bigger momentum/velocity change Or mass of car is less	(1)	3
5(c)(ii)	reference to greater horizontal momentum/force	(1)	1

5(d)	[The question says that the calculations are correct, the question is about the assumptions made. Do not credit a statement that the GPE is correct. MP1 is for the assumption that the KE after firing is the same as the max GPE. Do not credit energy loss due to air resistance or sound]		
	$E_k \rightarrow E_{grav}$ of pendulum correct Or KE after collision is correct	(1)	
	E_k in collision not conserved Or not an elastic collision Or inelastic collision (do not credit just 'KE is lost')	(1)	
	Some energy becomes heat	(1) (1)	
	E_k (of pellet before collision)is greater than 0.16J		4
	Total for question		16

Question Number	Answer		Mark
6 (a)	Use of $\frac{1}{2}$ mv ² and mgh (do not credit use of $v^2 = 2as$ since <i>a</i> not constant, scores 0/2) velocity = 0.77 (m s ⁻¹)	(1) (1)	2
6 (b)	Use of mv Correct momentum conservation statement Speed = 0.53 m s^{-1} (accept 0.56 m s^{-1} from use of show that value)	(1) (1) (1)	
	Assumption: no external forces/ no air resistance/ no force on pivot/negligible resistance Example of calculation	(1)	4
	$\overline{320 \text{ g} \times 0.77 \text{ m s}^{-1} = (320 \text{ g} \times \text{v}) + (55 \text{g} \times 1.4 \text{ m s}^{-1})}$ Speed of bat = 0.53 m s ⁻¹		
6 (c)	Use of $E_k = \frac{1}{2} mv^2$ (allow mass in g or kg) Correct calculation of E_k before and after (95, 45, 54 to any power of ten (see below) (If 0.8 m s ⁻¹ and 0.56 m s ⁻¹ , values are 102, 50 and 54) Elastic.	(1) (1) (1)	3
	Example of calculation Before impact $E_k \text{ bat} = \frac{1}{2} \ 0.320 \text{ kg} \ 0.77^2 \text{ (m s}^{-1})^2 = 0.095 \text{ J}$ After impact $E_k \text{ bat} = \frac{1}{2} \ 0.320 \text{ kg} \ 0.53^2 \text{ (m s}^{-1})^2 = 0.045 \text{ J}$ $E_k \text{ ball} = \frac{1}{2} \ 0.055 \text{ kg} \ 1.4^2 \text{ (m s}^{-1})^2 = 0.054 \text{ J}$		
6 (d)	Max 2x measured to nearest cmuncertainty in x gives an uncertainty in GPE / speed (of ball)difficulty of measuring a moving objectsome energy to soundcomments on $E_{(k)}$ after > beforerelates uncertainty to conclusion made in (c)	(1) (1) (1) (1) (1) (1)	2
	Total for Question	(*)	11

Question	Answer	Mark
Number		
7	QWC i and iii - Spelling of technical terms must be correct and the answer	
	must be organised in a logical sequence	
	Momentum conservation	(1)
	Total/initial momentum = 0	(1)
	Momentum of slime equal momentum of bacteria	(1)
	(Bacteria) moves in <u>opposite</u> direction [backwards or forwards OK]	(1)
	OR	
	Force on slime	(1)
	Equal and opposite force (on bacteria)	(1)
	Cause rate of change of momentum $/\Delta mv/t$ /ma to bacteria	(1)
	(Bacteria) moves in <u>opposite</u> direction [backwards or forwards OK]	(1)
		(max 4)
	Total for question	4